
EH2750 Computer Applications in
Power Systems, Advanced Course.

Professor Lars Nordström, Ph.D.
Dept of Industrial Information & Control systems, KTH
larsn@ics.kth.se

Lecture 5

Acknowledgement

• These slides are based largely on a set of slides
provided by:

Professor Rosenschein of the Hebrew University
Jerusalem, Israel

and
Dr. Georg Groh, TU-München, Germany.

• Available at the Student companion site of the
Introduction to Multi Agent Systems book

Outline of the Lecture

• Repeating where we are right now
-  Intelligent Agents of various types
-  How to make agents think and plan

• Constraint Satisfaction Problems
-  A variant of planning problems (still in one agent)

• Multi-agent interactions
-  Some concepts for cooperation

• Agent Communication
- Ontologies, XML, RDF and OWL

What is an Intelligent Agent?

• The main point about agents is they are autonomous:
capable of acting independently, exhibiting control over
their internal state

• Thus: an intelligent agent is a computer system capable
of flexible autonomous action in some environment in
order to meet its design objectives

System

Environment

input
output

The discussion so far

• Chapter 2 describes the idea of agents that perform
tasks in an environment and sets some definitions

• Chapters 3, 4, & 5 describe three different approaches
to describing and developing the apparent Intelligence
in the agents.
-  Chapter 3 – Deductive Reasoning Agents
-  Chapter 4 – Practical Reasoning Agents
-  Chapter 5 - Reactive (and Hybrid Agents)

• In the Excerpt from the AI book used in Lecture #4
we took a look at planning and searching

• Today we start looking at the Multi in Multi-agent
systems

Practical Reasoning

• Human practical reasoning consists of two activities:
-  deliberation

deciding what state of affairs we want to achieve
- means-ends reasoning

deciding how to achieve these states of affairs
• The outputs of deliberation are intentions

What are
possible
things I
could do?

What is
the best

way to do
it?

Inten-
tions Plans

Practical Reasoning Agent

How this can look in JACK

Outline of the Lecture

• Repeating where we are right now
-  Intelligent Agents of various types
-  How to make agents think and plan

• Constraint Satisfaction Problems
-  A variant of planning problems (still in one agent)

• Multi-agent interactions
-  Some concepts for cooperation

• Agent Communication
- Ontologies, XML, RDF and OWL

Constraint Satisfaction problems

• Formally, a Constraint Satisfaction Problem (CSP) is
-  A set of variables x1,x2,…xn!
-  All within a domain d1,d2,…dn!
-  A set of constraints c1,c2,…cm!

• A set of assigned values (to one or more of) the
variable(s) is a state.
-  E.g.

•  x1 = 23, x2 = 3 is the state {23,3}!

Solution to a CSP

1.  All variables have been assigned a value from their
respective Domain – complete assignment

2.  All constraints hold – consistent assignment

CSP – Different Characteristics

• Discrete variables with Finite Domains
- Map colouring (typical example)
-  Circuit switching

• Infinite domains
-  E.g. Scheduling of flights

• Continuous variables
- Linear constraints – optimisation problem….

CSP in discrete finite domains

• Classic example – map coloring

• Color the map of Australia
• Using the colors Red, Green, Blue
• No neighbours can have the same

color
• CSP formulation

-  xi = color of state i!
-  D = {Red, Green, Blue, Null}!
-  xi≠xj if xi=N(xj)!

Or, if you wish

• CSP formulation for Switching problem

• Supply all load in the grid
• Switches can be on or off
• No loops
• CSP formulation

-  xi = state of Switch i!
-  D = {breaking, conducting, Null}!
-  c1 = not(x1∧x2∧x3∧x4)!

G

L

Back to Australia

• Constraint Graph for Australia coloring problem

• It turns out, that the structure
of the problem can be useful for
finding the solution.

• This includes studying the types
and degrees of constraints.

And the Switching problem

A

B D

C

Types of constraints

• Unary constraints involve a single variable e.g.,
-  SA ≠ green!

• Binary constraints involve pairs of variables
-  SA ≠ WA!

• Higher order involves 3 or more variables
•  not(x1∧x2∧x3∧x4)!

• More advanced constraints
-  Use cost metrics for a variable

•  Powerflows for instance?
-  Constrained optimization problem

G

L

So, why all this?

• CSPs can be seen as search problems
-  States are defined by values assigned this far

•  Initial state: empty assignment {}
•  Successor function:

–  Assign value to a variable that is OK with constraints

•  Goal test: complete assignment with all constraints satisfied

• Note that every solution appears at depth n!
èuse depth-first search

But, wait – don’t be too fast

• What is the complexity of a completely naive solution?

O(n!dn)!

• Because for every variable you must test any
color and then test the constraints and goal
fulfilment.

• But that is stupid!

Commutativity

• The order in which assignments are made is not
important.

• Consider only one variable at each node.
-  No point to worry about color of WA when you are

selecting the color at SA

• Use Backtracking if searching fails.
-  Success function is:

•  Assign value to variable xi from di!
•  If not possible unless constraints are broken

–  Go back to xi-1 and assign alternate value from domain di-1!

”Generic” Heuristics

• Based on our knowledge of the constraint graph we
can choose which is the next node to assign a variable
to.

• Minimum Remaining values (MRV)
-  Pick the Node with the least number of available values.
-  This avoids searching for solutions

Degree Heuristic

• But where to start?
-  Select the Node with the most constraints, highest

degree* in constraint graph.

* Number of connecting edges in the Graph.

Backtracking Search

Things to take away

• Constraint Satsifaction Problems can be solved as
searches

• Analysis of the problem structure can provide us with
generic heuristics

• Planning with Backtracking is a key method for
cooperative planning

Outline of the Lecture

• Repeating where we are right now
-  Intelligent Agents of various types
-  How to make agents think and plan

• Constraint Satisfaction Problems
-  A variant of planning problems (still in one agent)

• Multi-agent interactions
-  Some concepts for cooperation

• Agent Communication
- Ontologies, XML, RDF and OWL

Multi-agent Systems

Multi-agent Systems

Contains a number of agents…

• …which interact through communication…
• …are able to act in an environment…
• …have different “spheres of influence” (which may

coincide)…
• …will be linked by other (organizational) relationships

Working Together
• Why and how do agents work together?

• Important to make a distinction between:
-  benevolent agents
-  self-interested agents

Benevolent Agents

• If we “own” the whole system, we can design agents to
help each other whenever asked

• In this case, we can assume agents are benevolent: our
best interest is their best interest

• Problem-solving in benevolent systems is cooperative
distributed problem solving (CDPS)

• Benevolence simplifies the system design task enormously!

Self-Interested Agents
• If agents represent individuals or organizations, (the more

general case), then we cannot make the benevolence
assumption

• Agents will be assumed to act to further their own interests,
possibly at expense of others

• Potential for conflict
• May complicate the design task enormously

Benevolent Agents
Task Sharing and Result Sharing

• Two main modes of cooperative problem solving:
-  task sharing:

components of a task are distributed to component agents
-  result sharing:

information (partial results, etc.) is distributed

Benevolent Agents
Cooperative Distributed Problem Solving

•  CDPS is concerned with investigation of:
•  Problem subdivision
•  Sub-Problem distribution
•  Result synthesis
•  Optimization of problem solver coherence
•  Optimization of problem solver coordination

Benevolent Agents

Coherence

Coherence: Refers to “how well the MAS behaves as a
unit along some dimension of evaluation”. Coherence
may be measured in terms of

•  Solution quality
•  resource usage
•  conceptual clarity of operation
•  performance degradation if unexpected failure
occurs

Benevolent Agents

Coordination

•  Coordination: “The degree...to which [the agents] can
avoid ‘extraneous’ activity [such as] ...synchronizing and
aligning their activities”
à Poor coordination if

•  Agents clobber each other’s sub-goals
•  Lots of communication (no mutual predictability (e.g.
by expressive models of each other))
•  Destructive interference if conflict

Self-Interested Agents

Utilities and Preferences

• Assume we have just two agents: Ag = {i, j}
• Agents are assumed to be self-interested: they have
preferences over how the environment is

• Assume Ω = {ω1, ω2, …}is the set of “outcomes” that
agents have preferences over

• We capture preferences by utility functions:
 ui = Ω → R
 uj = Ω → R	

• Utility functions lead to preference orderings over
outcomes:

What is Utility?
• Utility is not money (but it is a useful analogy)
• Typical relationship between utility & money:

Multiagent Encounters

• We need a model of the environment in which these
agents will act…
-  agents simultaneously choose an action to perform, and as a

result of the actions they select, an outcome in Ω will result
-  the actual outcome depends on the combination of actions
-  assume each agent has just two possible actions that it can

perform, C (“cooperate”) and D (“defect”)
• Environment behavior given by state transformer
function:

Multiagent Encounters
• Here is a state transformer function:

(This environment is sensitive to actions of both agents.)

• Here is another:

(Neither agent has any influence in this environment.)

• And here is another:

(This environment is controlled by j.)

Rational Action
• Suppose we have the case where both agents can
influence the outcome, and they have utility functions
as follows:

• With a bit of abuse of notation:

• Then agent i’s preferences are:

•  “C” is the rational choice for i.
(Because i prefers all outcomes that arise through C
over all outcomes that arise through D.)

Payoff Matrices

• We can characterize the previous scenario in a payoff
matrix:

• Agent i is the column player
• Agent j is the row player

Dominant Strategies
• Given any particular strategy (either C or D) of agent

i, there will be a number of possible outcomes
• We say s1 dominates s2 if every outcome possible by i
playing s1 is preferred over every outcome possible
by i playing s2

• A rational agent will never play a dominated strategy
• So in deciding what to do, we can delete dominated
strategies

• Unfortunately, there isn’t always a unique
undominated strategy

Nash Equilibrium
•  In general, we will say that two strategies s1 and s2

are in Nash equilibrium if:
1.  under the assumption that agent i plays s1, agent j can do no

better than play s2; and
2.  under the assumption that agent j plays s2, agent i can do no

better than play s1.
•  Neither agent has any incentive to deviate from a

Nash equilibrium
•  Unfortunately:

1.  Not every interaction scenario has a Nash equilibrium
2.  Some interaction scenarios have more than one Nash

equilibrium

Competitive and Zero-Sum Interactions

• Where preferences of agents are diametrically opposed
we have strictly competitive scenarios

• Zero-sum encounters are those where utilities sum to
zero:

 ui(ω) + uj(ω) = 0 for all ω in Ω	

• Zero sum implies strictly competitive
• Zero sum encounters in real life are very rare … but

people tend to act in many scenarios as if they were zero
sum

The Prisoner’s Dilemma

• Two men are collectively charged with a crime and held in
separate cells, with no way of meeting or communicating.
They are told that:
-  if one confesses and the other does not, the confessor will be

freed, and the other will be jailed for three years
-  if both confess, then each will be jailed for two years

• Both prisoners know that if neither confesses, then they
will each be jailed for one year

The Prisoner’s Dilemma
• Payoff matrix for

prisoner’s dilemma:

• Top left: If both defect, then both get punishment for
mutual defection

• Top right: If i cooperates and j defects, i gets sucker’s
payoff of 1, while j gets 4

• Bottom left: If j cooperates and i defects, j gets sucker’s
payoff of 1, while i gets 4

• Bottom right: Reward for mutual cooperation

The Prisoner’s Dilemma

• The individual rational action is defect
This guarantees a payoff of no worse than 2, whereas
cooperating guarantees a payoff of at most 1

• So defection is the best response to all possible strategies:
both agents defect, and get payoff = 2

• But intuition says this is not the best outcome:
Surely they should both cooperate and each get payoff of
3!

The Prisoner’s Dilemma
• This apparent paradox is the fundamental problem of multi-

agent interactions.
It appears to imply that cooperation will not occur in
societies of self-interested agents.

• Real world examples:
-  nuclear arms reduction (“why don’t I keep mine. . . ”)
-  free rider systems — public transport;

• The prisoner’s dilemma is present everywhere.

• Can we recover cooperation?

- Well, yes we can introduce auctions, negotiations and
argumentation. More on this next lecture!

Outline of the Lecture

• Repeating where we are right now
-  Intelligent Agents of various types
-  How to make agents think and plan

• Constraint Satisfaction Problems
-  A variant of planning problems (still in one agent)

• Multi-agent interactions
-  Some concepts for cooperation

• Agent Communication
- Ontologies, XML, RDF and OWL

Agent Communication

•  The traditional computer sciences view on
communication in concurrent systems is
focused on solving synchronization of multiple
processes.

•  Example:
•  Processes p1 and p2; shared variable v;

 p1 reads v;
 p2 reads v;
 p2 updates v;
 p1 updates v;
 à updates by p2 are lost;

Agent Communication II

Object oriented view on communication: Object o2
invokes method m on object o1: Java: o1.m(arg)!

•  o2 has control over invocation. o1 must invoke m.

Agent view on communication: Agent a2 asks (sends
event in JACK) agent a1 to perform action α. (a2 makes
a request).

•  a1 has control over whether it performs action α.
Agents are autonomous.

Agent Communication III

•  What agents can do:
 Perform communication acts

•  Goal: Influence other agents:
•  To make them perform actions or
•  to make them believe something (change their

belief)

•  The receiving agent decides whether to perform
action or believe proposition

Speech Acts

• Most treatments of communication in (multi-)
agent systems borrow their inspiration from speech
act theory

• Speech act theories are pragmatic theories of
language, i.e., theories of language use: they
attempt to account for how language is used by
people every day to achieve their goals and
intentions

• The origin of speech act theories are usually traced
to Austin’s 1962 book, How to Do Things with
Words

Speech Acts in the agent community

• Based on the Speech Act theory, Agent Communication
Languages have been developed.

• The two most known are
-  KQML - Knowledge Quesry Markup Language.
-  FIPA – ACL Agent Communication Language.

• These are not programming languages as such, but
formalisations of communication acts that are useful to
understand and specify agent interaction.

Speech Acts – some thoughts.

• Consider:
-  performative = request

content = “the door is closed”
speech act = “please close the door”

-  performative = inform
content = “the door is closed”
speech act = “the door is closed!”

-  performative = inquire
content = “the door is closed”
speech act = “is the door closed?”

Agent Communication Languages

• We now consider agent communication languages
(ACLs) — standard formats for the exchange of
messages

• An early example of an ACL is KQML, developed by the
ARPA knowledge sharing initiative
KQML is comprised of two parts:
-  the knowledge query and manipulation language (KQML)
-  the knowledge interchange format (KIF)

• A later developed framework is the FIPA

KQML and KIF
• KQML is an ‘outer’ language, that defines various

acceptable ‘communicative verbs’, or performatives
Example performatives:
-  ask-if (‘is it true that. . . ’)
-  perform (‘please perform the following action. . . ’)
-  tell (‘it is true that. . . ’)
-  reply (‘the answer is . . . ’)

• KIF is a language for expressing message content

FIPA
• More recently, the Foundation for Intelligent Physical

Agents (FIPA) started work on a program of agent
standards — the centerpiece is an ACL

• Basic structure is quite similar to KQML:
-  performative

20 performative in FIPA
-  housekeeping

e.g., sender, etc.
-  content

the actual content of the message

FIPA, example of an performative

• Example:
(inform

 :sender agent1
 :receiver agent5
 :content (price good200 150)
 :language sl
 :ontology hpl-auction

) But this part
then?

To communicate…

• …the agents must understand each other

• To understand each other the agents must use
common terms, an Ontology is a formal specification
of such terms.

Specifications of Terms - XML

• A basic format for specifying information exchange is
the XML (eXtended Markup Language)

• The structure of the information is
decided by the author of the text file

• No rule checking is implemented in
the format

• Data can be named with tags.
• The strucuture of the XML file is

specified in an XML Schema (XMLS)
• By exchanging XMLS files, two agents

can be made aware of possible terms.

XML Schema

XMLS

Specifications of Terms - RDF

• Resource Description Framework uses XML syntax but
adds more rules to the terms.
-  XML is more flexible = Less interoperable
-  RDF is more strucutred)= More interoperable

• A framework (not a language) for describing resources
-  Providing a model for data
-  Syntax to allow exchange and use of information stored

in various locations
-  The point is to facilitate reading and correct use of

information by computers, not necessarily by people
(RDFS)
OWL

RDF Structure

• Described in RDF Schema (or now more popular OWL)
• Nodes are identified by URIs

-  E.g. http://iec.ch/TC57/2001/CIM-schema-cim10#Wires
• Elements in RDF files can be given more attributes

-  rdfs:Class
-  rdfs:Property
-  rdfs:subClassOf
-  rdf:type

Simplified Schema, Healthcare example

<rdfs:Class rdf:ID=“Provider”>	

 <rdfs:subClassOf rdf:resource=“#Person”/>	

</rdfs:Class>	

RDF example

 <?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:cd="http://www.recshop.fake/cd#">

<rdf:Description
rdf:about="http://www.recshop.fake/cd/Empire Burlesque">
 <cd:artist>Bob Dylan</cd:artist>
 <cd:country>USA</cd:country>
 <cd:company>Columbia</cd:company>
 <cd:price>10.90</cd:price>
 <cd:year>1985</cd:year>
</rdf:Description>

<rdf:Description
rdf:about="http://www.recshop.fake/cd/Hide your heart">
 <cd:artist>Bonnie Tyler</cd:artist>
 <cd:country>UK</cd:country>
 <cd:company>CBS Records</cd:company>
 <cd:price>9.90</cd:price>
 <cd:year>1988</cd:year>
</rdf:Description>
.
.
.
</rdf:RDF>

The xmlns:rdf namespace, specifies that
elements with the rdf prefix are from the
namespace "http://www.w3.org/1999/02/22-rdf-
syntax-ns#".

The xmlns:cd namespace, specifies that
elements with the cd prefix are from the
namespace "http://www.recshop.fake/cd#".

The <rdf:Description> element contains the
description of the resource identified by the
rdf:about attribute.

The elements: <cd:artist>, <cd:country>,
<cd:company>, etc. are properties of the
resource.

Specification of Terms - OWL

• OWL Ontology Web Language
• Adds even more strucutre to the meta-data definitions

• Adds relation to Objects, so that Logic can be used to
Infer facts about the data.

OWL

Outline of the Lecture

• Repeating where we are right now
-  Intelligent Agents of various types
-  How to make agents think and plan

• Constraint Satsifaction Problems
-  A variant of planning problems (still in one agent)

• Multi-agent interactions
-  Some concepts for cooperation

• Agent Communication
- Ontologies, XML, RDF and OWL

