Q%’@%‘, EH2750 Computer Applications in

FKTHS

G vy Power Systems, Advanced Course.
R’

ROYAL INSTITUTE
OF TECHNOLOGY

Lecture 5

Professor Lars Nordstréom, Ph.D.

Dept of Industrial Information & Control systems, KTH
larsn@ics.kth.se

Acknowledgement

» These slides are based largely on a set of slides
provided by:

Professor Rosenschein of the Hebrew University
Jerusalem, Israel

and
Dr. Georg Groh, TU-Minchen, Germany.

* Available at the Student companion site of the
Introduction to Multi Agent Systems book

Outline of the Lecture

» Repeating where we are right now
- Intelligent Agents of various types
- How to make agents think and plan

e Constraint Satisfaction Problems
- A variant of planning problems (still in one agent)

» Multi-agent interactions
- Some concepts for cooperation

* Agent Communication
- Ontologies, XML, RDF and OWL

What is an Intelligent Agent?

* The main point about agents is they are autonomous:
capable of acting independently, exhibiting control over
their internal state

e Thus: an intelligent agent is a computer system capable
of flexible autonomous action in some environment in
order to meet its design objectives

input System

Environment

The discussion so far

o Chapter 2 describes the idea of agents that perform
tasks in an environment and sets some definitions
o Chapters 3, 4, & 5 describe three different approaches

to describing and developing the apparent Intelligence
in the agents.

- Chapter 3 - Deductive Reasoning Agents
- Chapter 4 - Practical Reasoning Agents
- Chapter 5 - Reactive (and Hybrid Agents)

» In the Excerpt from the AI book used in Lecture #4
we took a look at planning and searching

» Today we start looking at the Multi in Multi-agent
systems

Practical Reasoning

* Human practical reasoning consists of two activities:

- deliberation
deciding what state of affairs we want to achieve

- means-ends reasoning
deciding how to achieve these states of affairs

» The outputs of deliberation are intentions

What are Inten- What is Plans
possible the best

things I
could do?

way to do
it?

ROYAL INSTITUTE
OF TECHNOLOGY

Practical Reasoning Agent

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
inputs: percept, a percept
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, 1mitially null
problem, a problem formulation

state «— UPDATE-STATE(stale, percept)

if seq 1s empty then do
goal «— FORMULATE-GOAL(state)
problem «+— FORMULATE-PROBLEM(state, goal)
seq «— SEARCH(problemn)

action «FIRST(seq)

seq «— REST(seq)

return action

=1

ROYAL INSTITUTE

OF TECHNOLOGY

PlanSelected

SelectPlan

hanigles hantle

StartThinking

Outline of the Lecture

o Constraint Satisfaction Problems
- A variant of planning problems (still in one agent)

Constraint Satisfaction problems

* Formally, a Constraint Satisfaction Problem (CSP) is

- A set of variables Xy Xy Xy
- All within a domain d,,d,,..d,
- A set of constraints Cy,CyyeCpy

» A set of assigned values (to one or more of) the
variable(s) is a state.

- E.q.
© %X, =23, X, = 3 1is the state {23,3}

ROYAL INSTITUTE
OF TECHNOLOGY

Solution to a CSP

All variables have been assigned a value from their
respective Domain — complete assignment

All constraints hold — consistent assignment

CSP - Different Characteristics

» Discrete variables with Finite Domains
- Map colouring (typical example)
- Circuit switching

e Infinite domains
- E.g. Scheduling of flights

e Continuous variables
- Linear constraints — optimisation problem....

minimize f(x)
I

subject to g;(x) <

CSP in discrete finite domains

ROYAL INSTITUTE
o]

F TECH

NOLOGY

» Classic example — map coloring

e Color the map of Australia

» Using the colors Red, Green, Blue

* No neighbours can have the same
color

e CSP formulation
- X; = color of state 1
- D = {Red, Green, Blue, Null}

Northem
Territory

Western
Australia

- X;#Xy 1f x;=N(Xxy)

Solutions are assignments satisfying all constraints, e.g
I Aw=red, NT veid. NSW rwoen. 1

Or, if you wish

» CSP formulation for Switching problem

e Supply all load in the grid
» Switches can be on or off
* No loops
e CSP formulation
- X, = state of Switch 1
- D = {breaking, conducting, Null}

- C; = not(X;AX,AX;AX,)

Back to Australia

e Constraint Graph for Australia coloring problem

o It turns out, that the structure
e of the problem can be useful for
finding the solution.

» This includes studying the types
and degrees of constraints.

2
®

And the Switching problem

Types of constraints

* Unary constraints involve a single variable e.qg.,
- SA # green

* Binary constraints involve pairs of variables
- SA # WA

» Higher order involves 3 or more variables

* not (xX;AX,AX;AX,)

e More advanced constraints

- Use cost metrics for a variable
- Powerflows for instance?
- Constrained optimization problem

So, why all this?

» CSPs can be seen as search problems
- States are defined by values assigned this far
- Initial state: empty assignment {}

- Successor function:
— Assign value to a variable that is OK with constraints

- Goal test: complete assignment with all constraints satisfied

» Note that every solution appears at depth n
= use depth-first search

But, wait — don’t be too fast

» What is the complexity of a completely naive solution?
O(n!dn)

* Because for every variable you must test any
color and then test the constraints and goal
fulfilment.

e But that is stupid!

Commutativity

e The order in which assignments are made is not
important.
» Consider only one variable at each node.

- No point to worry about color of WA when you are
selecting the color at SA

» Use Backtracking if searching fails.
- Success function is:
- Assign value to variable x; from d;

- If not possible unless constraints are broken
- Go back to x;_; and assign alternate value from domain d,_,

"Generic” Heuristics

* Based on our knowledge of the constraint graph we
can choose which is the next node to assign a variable
to.

e Minimum Remaining values (MRV)
- Pick the Node with the least number of available values.
- This avoids searching for solutions

"? . Allows 1 value for SA
[—HQ

=t

[_L’_‘ b — ‘t_[_}—' A —_— ! k_ﬁ__ 3
W gy - M "{“Lt Allows 0 values for SA
’ F\ y

Degree Heuristic

e But where to start?

- Select the Node with the most constraints, highest
degree* in constraint graph.

U R RS

* Number of connecting edges in the Graph.

oy

Sy,
FKTHY

VETENSKAP
38 OCH KONST 9%

St Backtracking Search

ROYAL INSTITUTE
OF TECHNOLOGY

function BACKTRACKING-SEARCH(¢sp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({ }.csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns a solution, or failure

if assignment is complete then return assignment

var «+— SELECT-UNASSIGNED- VARIABLE(VARIABLES| csp]. assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp)do

if value 1is consistent with assignment according to CONSTRAINTS[csp] then

add {var =value) to assignment
result — RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value) from assignment

return failure

Figure 53 A simple backtracking algorithm for constraint satisfaction problems. The
algorithm 1s modeled on the recursive depth-first search of Chapter 3. The functions
SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES can be used to imple-
ment the general-purpose heuristics discussed 1n the text.

Things to take away

e Constraint Satsifaction Problems can be solved as
searches

» Analysis of the problem structure can provide us with
generic heuristics

* Planning with Backtracking is a key method for
cooperative planning

Outline of the Lecture

ROYAL INSTITUTE
OF TECHNOLOGY

» Multi-agent interactions
- Some concepts for cooperation

oy

Sy,
FKTHY

VETENSKAP
38 OCH KONST 9%

St Multi-agent Systems

ROYAL INSTITUTE
OF TECHNOLOGY

-

s - -
7
[
L}
~
\\!
KEY Environment
------ organisational relationship
. . sphere of 1 E
<=2 interaction sphere of influence

agent

Multi-agent Systems

Contains a number of agents...

e ...which interact through communication...
e ...are able to act in an environment...

e ..have different “spheres of influence” (which may
coincide)...

o ...will be linked by other (organizational) relationships

Working Together

* Why and how do agents work together?

 Important to make a distinction between:
- benevolent agents
- self-interested agents

Benevolent Agents

o If we “own” the whole system, we can design agents to
help each other whenever asked

* In this case, we can assume agents are benevolent: our
best interest is their best interest

* Problem-solving in benevolent systems is cooperative
distributed problem solving (CDPS)

e Benevolence simplifies the system design task enormously!

Self-Interested Agents

o If agents represent individuals or organizations, (the more
general case), then we cannot make the benevolence
assumption

» Agents will be assumed to act to further their own interests,
possibly at expense of others

» Potential for conflict
» May complicate the design task enormously

Benevolent Agents

s Task Sharing and Result Sharing

* Two main modes of cooperative problem solving:

- task sharing:
components of a task are distributed to component agents

- result sharing:
information (partial results, etc.) is distributed

:ir Task1

T_Tasl: 11 |Task12 | Task 1 3 W W,
(WAW; I WAWi (WAW (wAw) 707

0 1 1 S S
task sharing result sharing

Benevolent Agents
Cooperative Distributed Problem Solving

 CDPS is concerned with investigation of:
 Problem subdivision
« Sub-Problem distribution

« Result synthesis
« Optimization of problem solver coherence
« Optimization of problem solver coordination

<
40

decomposition solution synthesis

Y

Benevolent Agents

Coherence

Coherence: Refers to “how well the MAS behaves as a
unit along some dimension of evaluation”. Coherence
may be measured in terms of

e Solution quality

® resource usage

e conceptual clarity of operation

e performance degradation if unexpected failure

occurs

Benevolent Agents

Coordination

e Coordination: “The degree...to which [the agents] can
avoid ‘extraneous’ activity [such as] ...synchronizing and
aligning their activities”
- Poor coordination if
e Agents clobber each other’s sub-goals
e Lots of communication (no mutual predictability (e.g.
by expressive models of each other))
e Destructive interference if conflict

Self-Interested Agents

Utilities and Preferences

* Assume we have just two agents: 4g = {i, j}

* Agents are assumed to be self-interested: they have
preferences over how the environment is

e Assume Q = {w,, w,, ...}is the set of “outcomes” that
agents have preferences over
» We capture preferences by utility functions:
u,=Q —=R
u, = Q — R
o Utility functions lead to preference orderings over
outcomes:
w=;w' means u;j(w) > u;(W)
w =i w means uj(w) > uj(w)

What is Utility?

e Utility is not money (but it is a useful analogy)
e Typical relationship between utility & money:

ROYAL INSTITUTE
OF TECHNOLOGY

utility

money

o

Multiagent Encounters

e We need a model of the environment in which these
agents will act...

- agents simultaneously choose an action to perform, and as a
result of the actions they select, an outcome in Q will result

- the actual outcome depends on the combination of actions
- assume each agent has just two possible actions that it can
perform, C (“cooperate”) and D (“defect”)
* Environment behavior given by state transformer
function:
— ()

T - d,(“ X Ac

agenti's action agent;’'s action

Multiagent Encounters
e Here is a state transformer function:
T(D, [)) = W1 T(D_, C') = Wy T(C‘, [)) = W3 T(C‘, C') — Wy

(This environment is sensitive to actions of both agents.)

* Here is another:
T(D,D)=w T(D,C)=w 7(C,D)=w; 7(C,C)=uwy
(Neither agent has any influence in this environment.)

e And here is another:
T(D,D)y=w 7(D,C)=wr 7(C,D)=w1 7(C,C)=uwy

(This environment is controlled by j.)

Rational Action

* Suppose we have the case where both agents can
influence the outcome, and they have utility functions
as follows: u{w)=1 wufwe)=1 wuws)=4 ufwy) =4

ulw) =1 wlwn) =4 ufws) =1 wfws) =1

» With a bit of abuse of notation:

u(D,D)=1 wu({D,C)=1 ul{C,D)=4 ul(C,C)=4
w;(D,D) =1 w(D,C)=4 u(C,D)=1 u(C,C)=41

*Then agent i’ s preferences are:
C,.C> C,D > D,C» DD
- “C” is the rational choice for i.

(Because i prefers all outcomes that arise through C
over all outcomes that arise through D.)

Payoff Matrices

» We can characterize the previous scenario in a payoff

matrix: ;
defect coop
defect 1 4
i 1 1
coop 1 4
4 4

e Agent i is the column player
» Agent j is the row player

Dominant Strategies

» Given any particular strategy (either C or D) of agent
i, there will be a number of possible outcomes

*» We say s, dominates s, if every outcome possible by i
playing s, is preferred over every outcome possible
by i playing s,

* A rational agent will never play a dominated strategy

*So in deciding what to do, we can delete dominated
strategies

e Unfortunately, there isn’ t always a unique
undominated strategy

Nash Equilibrium

e In general, we will say that two strategies s, and s,
are in Nash equilibrium if:

1. under the assumption that agent i plays s,, agent j can do no
better than play s,; and

2. under the assumption that agent ; plays s,, agent i can do no
better than play s,.
o Neither agent has any incentive to deviate from a

Nash equilibrium

e Unfortunately:
1. Not every interaction scenario has a Nash equilibrium

2. Some interaction scenarios have more than one Nash
equilibrium

Competitive and Zero-Sum Interactions

» Where preferences of agents are diametrically opposed
we have strictly competitive scenarios

e Zero-sum encounters are those where utilities sum to
Zero:
u(w)+ u(w)y=0 forall win Q
e Zero sum implies strictly competitive

e Zero sum encounters in real life are very rare ... but
people tend to act in many scenarios as if they were zero
sum

The Prisoner s Dilemma

* Two men are collectively charged with a crime and held in
separate cells, with no way of meeting or communicating.
They are told that:

- if one confesses and the other does not, the confessor will be
freed, and the other will be jailed for three years

- if both confess, then each will be jailed for two years

» Both prisoners know that if neither confesses, then they
will each be jailed for one year

The Prisoner s Dilemma

i

e Payoff matrix for de.fect coop
prisoner’ s dilemma: defect| 2 1
j 2 |4
coop 4 3
1 3

e Top left: If both defect, then both get punishment for
mutual defection

» Top right: If i cooperates and j defects, i gets sucker’s
payoff of 1, while j gets 4

» Bottom left: If j cooperates and i defects, j gets sucker’s
payoff of 1, while i gets 4

» Bottom right: Reward for mutual cooperation

The Prisoner’ s Dilemma

e The individual rational action is defect
This guarantees a payoff of no worse than 2, whereas
cooperating guarantees a payoff of at most 1

» So defection is the best response to all possible strategies:
both agents defect, and get payoff = 2

e But intuition says this is not the best outcome:
Surely they should both cooperate and each get payoff of
3!

The Prisoner’ s Dilemma

* This apparent paradox is the fundamental problem of multi-
agent interactions.
It appears to imply that cooperation will not occur in
societies of self-interested agents.

* Real world examples:
- nuclear arms reduction (“why don’t I keep mine. .. ")
- free rider systems — public transport;

e The prisoner’s dilemma is present everywhere.
e Can we recover cooperation?

- Well, yes we can introduce auctions, negotiations and
argumentation. More on this next lecture!

Outline of the Lecture

* Agent Communication
- Ontologies, XML, RDF and OWL

Agent Communication

 The traditional computer sciences view on
communication in concurrent systems is

focused on solving synchronization of multiple
processes.

« Example:
 Processes pl and p2; shared variable v;
pl reads v;
p2 reads v;
p2 updates v;
pl updates v;
- updates by p2 are lost;

ey

BT,

bl Agent Communication II

Q‘ hD
By

Object oriented view on communication: Object o2
invokes method m on object ol1: Java: ol.m(arg)
e 02 has control over invocation. ol must invoke m.

Agent view on communication: Agent a2 asks (sends
event in JACK) agent al to perform action «. (a2 makes
a request).
e al has control over whether it performs action «.
Agents are autonomous.

Agent Communication III

« What agents can do:
Perform communication acts

« Goal: Influence other agents:
« To make them perform actions or

« to make them believe something (change their
belief)

 The receiving agent decides whether to perform
action or believe proposition

Speech Acts

» Most treatments of communication in (multi-)
agent systems borrow their inspiration from speech

act theory
» Speech act theories are pragmatic theories of
language, i.e., theories of language use: they

attempt to account for how language is used by
people every day to achieve their goals and

intentions

» The origin of speech act theories are usually traced
to Austin’s 1962 book, How to Do Things with
Words

Speech Acts in the agent community

» Based on the Speech Act theory, Agent Communication
Languages have been developed.

e The two most known are

- KQML - Knowledge Quesry Markup Language.
- FIPA - ACL Agent Communication Language.

*» These are not programming languages as such, but
formalisations of communication acts that are useful to
understand and specify agent interaction.

Speech Acts - some thoughts.

e Consider:

- performative = request
content = “the door is closed”
speech act = “please close the door”

- performative = inform
content = “the door is closed”
speech act = “the door is closed!”
- performative = inquire
content = “the door is closed”
speech act = “is the door closed?”

Agent Communication Languages

* We now consider agent communication languages
(ACLs) — standard formats for the exchange of
messages

* An early example of an ACL is KQML, developed by the
ARPA knowledge sharing initiative
KQML is comprised of two parts:
- the knowledge query and manipulation language (KQML)

- the knowledge interchange format (KIF)
» A later developed framework is the FIPA

KQML and KIF

* KQML is an ‘outer’ language, that defines various
acceptable ‘communicative verbs’, or performatives
Example performatives:

- ask-if (‘isittrue that...’)

- perform (‘please perform the following action. .. ")
- tell (‘itis true that. . .’)

- reply (‘the answeris. .. ")

» KIF is a language for expressing message content

FIPA

» More recently, the Foundation for Intelligent Physical
Agents (FIPA) started work on a program of agent
standards — the centerpiece is an ACL

e Basic structure is quite similar to KQML.:

- performative
20 performative in FIPA

- housekeeping
e.g., sender, etc.

- content
the actual content of the message

 Example:
(inform
:sender
:receiver
:content
: language
:ontology

agentl
a 5
(price good200 150)
sl
hpl-auction

FIPA, example of an performative

But this part
then?

To communicate...

ROYAL INSTITUTE
OF TECHNOLOGY

e ...the agents must understand each other

* To understand each other the agents must use
common terms, an Ontology is a formal specification
of such terms.

Specifications of Terms - XML

» A basic format for specifying information exchange is
the XML (eXtended Markup Language)

<?7xml version="1.0" standalone="yes" 7>
- «<shop location="Birmingham" size="Large">
- «food>
<Name=Apple</Name:=
<type=fruit</type>
<cost>19</cost>
</food>
- <food>
<Name=Carrot</Name:>
<type=vegetable</typex
<cost>10</cost>
</food>
</shop>

e The structure of the information is
decided by the author of the text file

* No rule checking is implemented in
the format

e Data can be named with tags.

e The strucuture of the XML file is
specified in an XML Schema (XMLS)

» By exchanging XMLS files, two agents
can be made aware of possible terms.

ap

Sy,
EFKTHY

VETENSKAP

b XML Schema

ROYAL INSTITUTE
OF TECHNOLOGY

kxs:schema xmlns:xs="http://www.w3.org/2001/XMLschema"
¥mins:xdb="http://xmlns.oracle.com/xdb version=1.0">
<xs:element name="EmployeeDetails">
<xg:complexType>
<xs:sequence>
<xs:element name="MailAddressTo">
<xg:complexType>
<Xs:sequence>
<x¥s:element name="EmployeeName" type="xs:string"/>
<x¥s:element name="Department" type="xs:string"/>
<xg:element name="Job" type="xs:string"/>
<x3:element name="Salary" type="xs:string"/>
</xXs:isequence>
<xs:attribute name="EmployeeId" type="xs:string" use="reguired"/>
</xs:complexType>
</xsielement>
</%s:sequence>
</®s:complexType>
</®s:ielement>
</®s:schema>

XMLS

Specifications of Terms - RDF

» Resource Description Framework uses XML syntax but

adds more rules to the terms.
- XML is more flexible = Less interoperable

- RDF is more strucutred)= More interoperable

* A framework (not a language) for describing resources

- Providing a model for data

- Syntax to allow exchange and use of information stored

in various locations

- The point is to facilitate reading and correct use of
information by computers, not necessarily by people

%/

(RDFS)
owL

%

RDF Structure

ROYAL INSTITUTE
OF TECHNOLOGY

e Described in RDF Schema (or now more popular OWL)
* Nodes are identified by URIs

- E.g. http://iec.ch/TC57/2001/CIM-schema-cim10#Wires
* Elements in RDF files can be given more attributes
rdfs:Class

<rdfs:Class rdf:ID="Switch">

- rdfs:Property Crife:apelspeigene/a Lubel

. rdf : resource="#ConductingEquipment"/
- rdfs:subClassOf </rdfs:Class> ’
- rdf: type e abe Chreakere rafs . labels

<rdfs:subClassOf rdf:resource="#Switch"/>
</rdfs:Class>

<rdf:Property rdf:ID="Switch.NormalOpen">
<rdfs:label>NormalOpen</rdfs:label>
<rdfs:domain resource="#Switch"/>
<rdfs:range rdf:resource="#Boolean"/>
</rdf:Property>

<rdf:Property rdf:ID="Breaker.AmpRating">
<rdfs:label>AmpRating</rdfs:label>
<rdfs:domain resource="#Breaker"/>
<rdfs:range rdf:resource="#Real"/>
</rdf:Property>

Simplified Schema, Healthcare example

Resource

<rdfs:Class rdf:ID="Provider >

<rdfs:subClassOf rdf:resource="“#Person” />

</rdfs:Class>

ey

S,
FXKTHE

VETENSKAP
38 OCH KONST 9

St RDF example

ROYAL INSTITUTE
OF TECHNOLOGY

The xmlins:rdf namespace, specifies that
elements with the rdf prefix are from the
namespace "http://www.w3.0rg/1999/02/22-rdf-
syntax-ns#".

The xmins:cd namespace, specifies that
elements with the cd prefix are from the
namespace "http://www.recshop.fake/cd#".

The <rdf:Description> element contains the
description of the resource identified by the
rdf:about attribute.

The elements: <cd:artist>, <cd:country>,
<cd:company>, etc. are properties of the
resource.

<?xml version="1.0"?>

<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:cd="http://www.recshop.fake/cd#" >

<rdf:Description

rdf:about="http://www.recshop.fake/cd/Empire Burlesque">
<cd:artist>Bob Dylan</cd:artist>
<cd:country>USA</cd:country>
<cd:company>Columbia</cd:company>
<cd:price>10.90</cd:price>
<cd:year>1985</cd:year>

</rdf:Description>

<rdf:Description
rdf:about="http://www.recshop.fake/cd/Hide your heart">
<cd:artist>Bonnie Tyler</cd:artist>
<cd:country>UK</cd:country>
<cd:company>CBS Records</cd:company>
<cd:price>9.90</cd:price>
<cd:year>1988</cd:year>
</rdf:Description>

</rdf:RDF>

Specification of Terms - OWL

* OWL Ontology Web Language
e Adds even more strucutre to the meta-data definitions

» Adds relation to Objects, so that Logic can be used to
Infer facts about the data.

OwL

TR

Outline of the Lecture

» Repeating where we are right now
- Intelligent Agents of various types
- How to make agents think and plan

e Constraint Satsifaction Problems
- A variant of planning problems (still in one agent)

» Multi-agent interactions
- Some concepts for cooperation

* Agent Communication
- Ontologies, XML, RDF and OWL

